This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247445 Decimal expansion of the negative derivative of Dawson integral at its inflection points. 3
 2, 8, 4, 7, 4, 9, 4, 3, 9, 6, 5, 6, 8, 4, 6, 4, 8, 2, 5, 2, 2, 0, 3, 1, 5, 7, 4, 4, 6, 7, 7, 3, 4, 1, 7, 4, 5, 4, 6, 6, 2, 5, 5, 2, 7, 7, 0, 6, 2, 8, 4, 7, 4, 1, 6, 8, 7, 6, 0, 7, 5, 9, 5, 1, 7, 0, 2, 6, 8, 3, 1, 7, 3, 2, 0, 4, 7, 8, 4, 5, 8, 6, 3, 7, 3, 7, 5, 4, 5, 8, 1, 7, 9, 4, 6, 3, 4, 2, 4, 1, 2, 4, 9, 7, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Stanislav Sykora, Table of n, a(n) for n = 0..2000 Eric Weisstein's World of Mathematics, Dawson's Integral Wikipedia, Dawson function FORMULA Equals 1/(2*xinfl^2-1) = A245262/xinfl, where xinfl=A133843. EXAMPLE 0.284749439656846482522031574467734174546625527706284741687607595170... PROG (PARI) Erfi(z) = -I*(1.0-erfc(I*z)); Dawson(z) = 0.5*sqrt(Pi)*exp(-z*z)*Erfi(z); \\ same as F(x)=D_+(x) DDawson(z) = 1.0 - 2*z*Dawson(z); \\ 1st derivative of the above D2Dawson(z) = -2.0*(z + (1.0-2.0*z*z)*Dawson(z)); \\ 2nd derivative xinfl = solve(z=1.0, 2.0, real(D2Dawson(z))); x = -DDawson(xinfl); CROSSREFS Cf. A133841, A133842, A133843, A243433, A245262. Sequence in context: A101314 A054530 A253883 * A151928 A271836 A021355 Adjacent sequences:  A247442 A247443 A247444 * A247446 A247447 A247448 KEYWORD nonn,cons AUTHOR Stanislav Sykora, Sep 17 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 13 17:55 EST 2018. Contains 317149 sequences. (Running on oeis4.)