login
A247399
Number of length n+4 0..3 arrays with no disjoint pairs in any consecutive five terms having the same sum.
1
200, 264, 340, 428, 528, 640, 864, 1136, 1456, 1824, 2240, 3072, 4096, 5312, 6720, 8320, 11520, 15488, 20224, 25728, 32000, 44544, 60160, 78848, 100608, 125440, 175104, 237056, 311296, 397824, 496640, 694272, 941056, 1236992, 1582080
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-5) - 8*a(n-10).
Empirical g.f.: 4*x*(50 + 66*x + 85*x^2 + 107*x^3 + 132*x^4 - 140*x^5 - 180*x^6 - 226*x^7 - 278*x^8 - 336*x^9) / ((1 - 2*x^5)*(1 - 4*x^5)). - Colin Barker, Nov 07 2018
EXAMPLE
Some solutions for n=6:
..3....2....1....0....0....0....3....3....1....3....1....3....2....1....2....1
..2....3....0....0....0....2....3....2....1....0....1....3....1....2....1....3
..2....3....3....0....2....0....2....1....1....1....3....3....3....0....0....3
..0....0....3....2....0....1....0....1....2....0....1....1....1....2....2....2
..2....3....3....3....3....0....3....1....3....0....0....2....1....2....2....3
..1....1....2....0....0....0....3....3....1....3....1....3....0....1....2....1
..2....3....0....0....0....2....3....2....1....0....1....3....1....2....1....3
..2....3....3....0....2....0....2....1....1....1....3....3....3....0....0....3
..0....0....3....2....0....3....0....1....0....0....1....1....1....2....2....2
..2....3....3....1....3....0....3....1....3....0....0....2....1....2....2....3
CROSSREFS
Column 3 of A247404.
Sequence in context: A192545 A118118 A124472 * A078492 A166256 A252059
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 16 2014
STATUS
approved