login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247391 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (1234567891011). 10
110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

LINKS

Table of n, a(n) for n=2..60.

Klaus Sutner and Sam Tetruashvili, Inferring automatic sequences (see table on the p. 5).

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,1).

FORMULA

G.f.: x^2*(110 + 55*x + 55*x^2 + 55*x^3 + 110*x^4 + 110*x^5 + 110*x^6 + 55*x^7 + 22*x^8 + 12*x^9 + 11*x^10)/(1-x^11).

a(n) = (1283*m^10 - 64570*m^9 + 1396065*m^8 - 16960020*m^7 + 127065939*m^6 - 605936100*m^5 + 1828078285*m^4 - 3335483030*m^3 + 3289569228*m^2 - 1288120680*m + 5443200)/453600 where m = (n mod 11). - Luce ETIENNE, Nov 04 2018

MATHEMATICA

CoefficientList[Series[(110 + 55 x + 55 x^2 + 55 x^3 + 110 x^4 + 110 x^5 + 110 x^6 + 55 x^7 + 22 x^8 + 12 x^9 + 11 x^10)/(1-x^11), {x, 0, 60}], x]

PROG

(MAGMA) &cat[[110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11]: n in [0..10]];

CROSSREFS

Cf. A176059, A217515, A217516, A217517, A217518, A247387, A247390.

Cf. A010880.

Sequence in context: A266660 A087303 A045884 * A110736 A084292 A266849

Adjacent sequences:  A247388 A247389 A247390 * A247392 A247393 A247394

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Sep 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 10:01 EDT 2020. Contains 334860 sequences. (Running on oeis4.)