|
|
A247390
|
|
Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (12345678910)*.
|
|
8
|
|
|
41, 40, 21, 11, 11, 40, 41, 20, 11, 10, 41, 40, 21, 11, 11, 40, 41, 20, 11, 10, 41, 40, 21, 11, 11, 40, 41, 20, 11, 10, 41, 40, 21, 11, 11, 40, 41, 20, 11, 10, 41, 40, 21, 11, 11, 40, 41, 20, 11, 10, 41, 40, 21, 11, 11, 40, 41, 20, 11, 10, 41, 40, 21, 11, 11, 40
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
LINKS
|
Table of n, a(n) for n=2..67.
Klaus Sutner and Sam Tetruashvili, Inferring automatic sequences (see table on the p. 5).
|
|
FORMULA
|
G.f.: x^2*(41 + 40*x + 21*x^2 + 11*x^3 + 11*x^4 + 40*x^5 + 41*x^6 + 20*x^7 + 11*x^8 + 10*x^9) / (1-x^10).
|
|
MATHEMATICA
|
CoefficientList[Series [(41 + 40 x + 21 x^2 + 11 x^3 + 11 x^4 + 40 x^5 + 41 x^6 + 20 x^7 + 11 x^8 + 10 x^9)/(1 - x^10), {x, 0, 40}], x]
|
|
PROG
|
(Magma) &cat[[41, 40, 21, 11, 11, 40, 41, 20, 11, 10]: n in [0..10]];
|
|
CROSSREFS
|
Cf. A176059, A217515 - A217518, A247387.
Sequence in context: A217159 A291473 A155769 * A291501 A142719 A155884
Adjacent sequences: A247387 A247388 A247389 * A247391 A247392 A247393
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, Sep 16 2014
|
|
STATUS
|
approved
|
|
|
|