%I #7 Apr 10 2021 20:30:26
%S 1,3,5,7,8,10,12,14,16,18,20,21,23,25,27,29,31,33,35,37,38,40,42,44,
%T 46,48,50,52,54,56,58,60,62,63,65,67,69,71,73,75,77,79,81,83,85,87,89,
%U 91,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120
%N Least m such that (4/m^2)*Sum_{k=0..m} sqrt(m^2 - k^2) < Pi + 1/n.
%C a(n+1) - a(n) is in {1,2} for n >= 1.
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 17.
%H Clark Kimberling, <a href="/A247357/b247357.txt">Table of n, a(n) for n = 1..200</a>
%t z = 200; s[m_] := s[m] = (4/m^2) Sum[Sqrt[m^2 - k^2], {k, 0, m}]
%t f[n_] := f[n] = Select[Range[z], s[#] < Pi + 1/n &, 1]
%t u = Flatten[Table[f[n], {n, 1, z}]]
%Y easy
%K nonn,easy
%O 1,2
%A _Clark Kimberling_, Sep 24 2014