login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247344 a(n) = 1 for n <= 4; a(n) = 25*a(n-1) - 200*a(n-2) + 800*a(n-3) - 1600*a(n-4) + 1280*a(n-5) otherwise. 6
1, 1, 1, 1, 1, 305, 7905, 137105, 2090305, 30673905, 446213025, 6483539025, 94216001025, 1369259983025, 19900452349025, 289229603172625, 4203610924242625, 61094494859232625, 887935798190222625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

a(n)/a(n-1) tends to 14.5338... = 5 + 5^(1/5)+5^(2/5)+5^(3/5)+5^(4/5) = 4/(1-5^(-1/5)), the real root of the polynomial x^5 - 25*x^4 + 200*x^3 - 800*x^2 + 1600*x - 1280.

In general, the polynomial x^5 - k5*x^4 - k4*x^3 - k3*x^2 - k2*x - k1 has a root r+b*m^(1/5)+c*m^(2/5)+d*m^(3/5)+g*m^(4/5), see links for coefficients k1, k2, k3, k4, k5.

LINKS

Alexander Samokrutov, Table of n, a(n) for n = 0..22

Alexander Samokrutov, Coefficients k1, k2, k3, k4, k5

Index entries for linear recurrences with constant coefficients, signature (25,-200,800,-1600,1280).

FORMULA

a(n) = 25*a(n-1)-200*a(n-2)+800*a(n-3)-1600*a(n-4)+1280*a(n-5).

G.f.: (976*x^4 - 624*x^3 + 176*x^2 - 24*x + 1)/(-1280*x^5 + 1600*x^4 - 800*x^3 + 200*x^2 - 25*x + 1).

MATHEMATICA

CoefficientList[Series[(976 x^4 - 624 x^3 + 176 x^2 - 24 x + 1) / (-1280 x^5 + 1600 x^4 - 800 x^3 + 200 x^2 - 25 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 19 2014 *)

PROG

(PARI) Vec( (976*x^4 - 624*x^3 + 176*x^2 - 24*x + 1)/(-1280*x^5 + 1600*x^4 - 800*x^3 + 200*x^2 - 25*x + 1) + O(x^66) ) \\ Joerg Arndt, Sep 14 2014

(MAGMA) [n le 5 select 1 else 25*Self(n-1)-200*Self(n-2)+800*Self(n-3)-1600*Self(n-4)+1280*Self(n-5): n in [1..30]]; // Vincenzo Librandi, Nov 19 2014

CROSSREFS

Cf. A255985, A255983.

Sequence in context: A160577 A256603 A058828 * A220601 A156168 A005951

Adjacent sequences:  A247341 A247342 A247343 * A247345 A247346 A247347

KEYWORD

nonn,easy

AUTHOR

Alexander Samokrutov, Sep 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 07:40 EDT 2019. Contains 328146 sequences. (Running on oeis4.)