This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247339 a(n) is the least number k such that the greatest prime divisor of k^2+1 is the smallest prime divisor of n^2+1. 1
 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 2, 1, 14, 1, 16, 1, 2, 1, 20, 1, 2, 1, 24, 1, 26, 1, 2, 1, 4, 1, 2, 1, 5, 1, 36, 1, 2, 1, 40, 1, 2, 1, 5, 1, 12, 1, 2, 1, 9, 1, 2, 1, 54, 1, 56, 1, 2, 1, 5, 1, 2, 1, 4, 1, 66, 1, 2, 1, 5, 1, 2, 1, 74, 1, 23, 1, 2, 1, 6, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n)=n if n^2+1 is prime and a(n)=1 if n is odd. Conjecture: for all integer n, there exists at least an integer m <= n such that the smallest prime factor of n^2+1 is also the greatest prime factor of m^2+1. - Michel Lagneau, Sep 27 2015 LINKS Michel Lagneau, Table of n, a(n) for n = 1..10000 EXAMPLE a(34)=5 because the greatest prime divisor of 5^2+1 = 2*13 is the smallest prime divisor of 34^2+1 =13*89. MAPLE with(numtheory):nn:=2000:T:=array(1..nn):U:=array(1..nn):   for i from 1 to nn do:     x:=factorset(i^2+1):T[i]:=x[1]:U[i]:=i:   od:     for n from 1 to 100 do:      ii:=0:       for k from 1 to 50000 while(ii=0) do:        y:=factorset(k^2+1):n0:=nops(y):q:=y[n0]:         if q=T[n]          then          ii:=1: printf(`%d, `, k):          else         fi:      od:    od: MATHEMATICA Table[k = 1; While[FactorInteger[k^2 + 1][[-1, 1]] != FactorInteger[n^2 + 1][[1, 1]], k++]; k, {n, 82}] (* Michael De Vlieger, Sep 27 2015 *) PROG (PARI) a(n) = {f = factor(n^2+1)[1, 1]; k = 1; while (! ((g=factor(k^2+1)) && (g[#g~, 1] == f)), k++); k; } \\ Michel Marcus, Sep 14 2014 CROSSREFS Cf. A002522, A089120, A014442. Sequence in context: A323244 A214052 A276094 * A281071 A256908 A258409 Adjacent sequences:  A247336 A247337 A247338 * A247340 A247341 A247342 KEYWORD nonn AUTHOR Michel Lagneau, Sep 14 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 11:44 EDT 2019. Contains 325254 sequences. (Running on oeis4.)