OFFSET
0,2
LINKS
Robert Israel, Table of n, a(n) for n = 0..435
EXAMPLE
Illustration of initial terms:
a(0) = 1*1 = 1 ;
a(1) = 1*1 + 1*1 = 2 ;
a(2) = 1*2 + 2*3 + 1*1 = 9 ;
a(3) = 1*6 + 3*11 + 3*6 + 1*1 = 58 ;
a(4) = 1*24 + 4*50 + 6*35 + 4*10 + 1*1 = 475 ;
a(5) = 1*120 + 5*274 + 10*225 + 10*85 + 5*15 + 1*1 = 4666 ;
a(6) = 1*720 + 6*1764 + 15*1624 + 20*735 + 15*175 + 6*21 + 1*1 = 53116 ;
a(7) = 1*5040 + 7*13068 + 21*13132 + 35*6769 + 35*1960 + 21*322 + 7*28 + 1*1 = 684762 ; ...
MAPLE
f:= proc(n) local k; add((-1)^(n-k)*binomial(n, k)*Stirling1(n+1, k+1), k=0..n); end proc:
map(f, [$0..30]); # Robert Israel, Aug 01 2019
MATHEMATICA
Table[Sum[(-1)^(n-k) * Binomial[n, k] * StirlingS1[n+1, k+1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 29 2014 *)
PROG
(PARI) {Stirling1(n, k)=if(n==0, 1, n!*polcoeff(binomial(x, n), k))}
{a(n)=sum(k=0, n, (-1)^(n-k)*binomial(n, k)*Stirling1(n+1, k+1))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 26 2014
STATUS
approved