OFFSET
0,7
COMMENTS
Every member of T is a Fibonacci number, and the sum of the numbers in column n is A000045(2n+2).
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
FORMULA
Let F = A000045 (Fibonacci numbers); then
(row 0, the bottom row) = (F(2n)), n >= 0;
(row 1, the middle row) = (F(2n)), n >= 0;
(row 2, the top row) = (F(2n-1)), n >= 0.
(n-th column sum) = (F(2n+2)), n >= 0.
EXAMPLE
First 10 columns:
0 .. 1 .. 3 .. 8 .. 21 .. 55 .. 144 .. 377 .. 987 ... 2584
0 .. 1 .. 3 .. 8 .. 21 .. 55 .. 144 .. 377 .. 987 ... 2584
1 .. 1 .. 2 .. 5 .. 13 .. 34 .. 89 ... 233 .. 610 ... 1597
T(2,2) counts these 3 paths, given as vector sums applied to (0,0):
(1,2) + (1,0); (1,1) + (1,1); (1,0) + (1,2).
MATHEMATICA
t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[1, 2] = 1;
t[n_, 0] := t[n, 0] = t[n - 1, 0] + t[n - 1, 1];
t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2];
t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2]
TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]] (* array *)
Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]] (* A247309 *)
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Clark Kimberling, Sep 12 2014
STATUS
approved