login
A247308
Layer counting sequence in the order-5 cubic honeycomb.
2
1, 7, 37, 163, 661, 2643, 10497, 41511, 164073, 648495, 2562749, 10127291, 40020845, 158152811, 624980489, 2469769903, 9759926065, 38568829879, 152414547541, 602304889075, 2380161078405, 9405812345187, 37169461719153, 146884589311479, 580451843386809, 2293803210617951, 9064547264192237, 35820865853787467
OFFSET
0,2
COMMENTS
The number of cubes reachable by at most n steps across faces in the {4,3,5} tessellation of hyperbolic space, for n >= 0.
LINKS
Tim Hutton, Generating code in C++, using VTK (gives incorrect terms from some point on!)
Eryk Kopczynski, HyperRogue. Run with parameters -geo 435h -csolve; compile with -DCAP_GMP=0 to get the conjectured formula.
FORMULA
a(d+17) = 3*a(d+16) + 2*a(d+15) + 7*a(d+14) + a(d+13) - 5*a(d+12) + 3*a(d+11) - 2*a(d+10) - 18*a(d+9) + 18*a(d+8) + 2*a(d+7) - 3*a(d+6) + 5*a(d+5) - a(d+4) - 7*a(d+3) - 2*a(d+2) - 3*a(d+1) + a(d) (conjectured, found experimentally and tested from 19 to 135). - Eryk Kopczynski, Jul 04 2020
CROSSREFS
For the {5,3,4} tessellation: A076765.
For the {5,4} tessellation: A054888.
Sequence in context: A201962 A269257 A269258 * A175284 A049494 A049495
KEYWORD
nonn
AUTHOR
Tim Hutton, Sep 11 2014
EXTENSIONS
Offset and terms corrected and more terms added by Eryk Kopczynski, Jul 04 2020
STATUS
approved