login
A247217
Decimal expansion of theta_3(0, exp(-2*Pi)), where theta_3 is the 3rd Jacobi theta function.
8
1, 0, 0, 3, 7, 3, 4, 8, 8, 5, 4, 8, 7, 7, 3, 9, 0, 9, 1, 0, 4, 7, 6, 7, 9, 5, 9, 5, 0, 6, 6, 9, 5, 3, 8, 6, 6, 2, 0, 7, 9, 9, 4, 3, 3, 2, 4, 4, 4, 5, 1, 9, 4, 0, 8, 2, 5, 4, 9, 5, 8, 1, 5, 3, 2, 4, 7, 3, 2, 5, 1, 7, 3, 3, 2, 9, 5, 6, 3, 7, 9, 8, 0, 5, 6, 9, 4, 9, 8, 3, 2, 1, 6, 6, 4, 4, 4, 2, 3, 5, 2, 7
OFFSET
1,4
LINKS
Eric Weisstein's MathWorld, Jacobi Theta Functions
Wikipedia, Theta function
FORMULA
Equals (4*Pi*sqrt(2) + 6*Pi)^(1/4)/(2*Gamma(3/4)).
Equals Sum_{n=-infinity..infinity} exp(-2*Pi*n^2).
EXAMPLE
1.0037348854877390910476795950669538662079943324445194...
MATHEMATICA
RealDigits[(4*Pi*Sqrt[2] + 6*Pi)^(1/4)/(2*Gamma[3/4]), 10, 102] // First
PROG
(PARI) (4*Pi*sqrt(2) + 6*Pi)^(1/4)/(2*gamma(3/4)) \\ Michel Marcus, Nov 26 2014
(Magma) C<i> := ComplexField(); (4*Pi(C)*Sqrt(2) + 6*Pi(C))^(1/4)/(2*Gamma(3/4)) // G. C. Greubel, Jan 07 2018
CROSSREFS
Cf. A000122, A175573 (theta_3(0, exp(-Pi)), A273081, A273082, A273083, A273084.
Sequence in context: A195769 A021968 A132821 * A252734 A101636 A193534
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved