login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247169 G.f. (4*x+3)/(2*(x+1))*(1+1/sqrt(-4*x^4-4*x^3+1)). 1
3, 1, -1, 4, 3, 1, 8, 22, 11, 31, 99, 111, 144, 456, 734, 904, 2155, 4285, 5921, 11173, 23603, 37489, 63161, 129031, 227072, 375376, 719432, 1335478, 2264118, 4126266, 7759608, 13613744, 24219051, 45127317, 81256395, 144053547, 264457881 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..36.

FORMULA

a(n) = n*sum_{m=0..(n-1)/2} binomial(n-2*m,m)*binomial(2*m-1,n-2*m-1)/(n-2*m), n>0, a(0)=3.

G.f.: A(x)=x*B'(x)/B(x), where B(x) is g.f. of A025277.

Conjecture: 3*(-n+1)*a(n) +(-7*n+15)*a(n-1) +4*(-n+3)*a(n-2) +6*(2*n-5)*a(n-3) +2*(20*n-69)*a(n-4) +4*(11*n-47)*a(n-5) +16*(n-5)*a(n-6)=0. - R. J. Mathar, Nov 25 2014

MAPLE

A247169 := proc(n)

    if n = 0 then

        3;

    else

        add( binomial(n-2*m, m)*binomial(2*m-1, n-2*m-1)/(n-2*m), m=0..floor((n-1)/2)) ;

        n*% ;

    end if;

end proc:

seq(A247169(n), n=0..50) ;

PROG

(Maxima)

a(n):=if n=0 then 3 else (n*sum((binomial(n-2*m, m)*binomial(2*m-1, n-2*m-1))/(n-2*m), m, 0, (n-1)/2));

CROSSREFS

Cf. A025277

Sequence in context: A157076 A049999 A126015 * A144336 A036040 A080575

Adjacent sequences:  A247166 A247167 A247168 * A247170 A247171 A247172

KEYWORD

sign

AUTHOR

Vladimir Kruchinin, Nov 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 03:06 EST 2019. Contains 320364 sequences. (Running on oeis4.)