login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers of (undirected) Hamiltonian paths in the n-Sierpiński gasket graph.
4

%I #16 Dec 30 2023 13:30:46

%S 3,12,552,6978816,429714433137180672,

%T 868161947968780041877535786874146453722578812928

%N Numbers of (undirected) Hamiltonian paths in the n-Sierpiński gasket graph.

%C Explicit formula and asymptotic are given by Chang and Chen (2011).

%C a(7) contains 137 decimal digits.

%H S.-C. Chang, L.-C. Chen. Hamiltonian walks on the Sierpinski gasket, J. Math. Phys. 52 (2011), 023301. doi:<a href="http://dx.doi.org/10.1063/1.3545358">10.1063/1.3545358</a>. arXiv:<a href="http://arxiv.org/abs/0909.5541">0909.5541</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HamiltonianPath.html">Hamiltonian Path</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiGasketGraph.html">Sierpiński Gasket Graph</a>.

%Y Cf. A234635, A246958, A246959.

%K nonn

%O 1,1

%A _Max Alekseyev_, Sep 08 2014