OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of psi(x^2) * psi(-x)^2 = psi(-x)^4 / phi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q)^2 * eta(q^4)^4 / eta(q^2)^3 in powers of q.
Euler transform of period 4 sequence [ -2, 1, -2, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 128^(1/2) * (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A246954.
G.f.: Product_{k>0} (1 - x^k)^3 * (1 + x^k) * (1 + x^(2*k))^4.
EXAMPLE
G.f. = 1 - 2*x + 2*x^2 - 4*x^3 + 3*x^4 - 2*x^5 + 6*x^6 - 4*x^7 + 4*x^8 + ...
G.f. = q - 2*q^2 + 2*q^3 - 4*q^4 + 3*q^5 - 2*q^6 + 6*q^7 - 4*q^8 + 4*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x]^2/(4 x^(1/2)), {x, 0, n}];
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^4 / eta(x^2 + A)^3, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 08 2014
STATUS
approved