login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246953 Expansion of phi(-x) * psi(x^2)^2 in powers of x where phi(), psi() are Ramanujan theta functions. 2
1, -2, 2, -4, 3, -2, 6, -4, 4, -6, 4, -4, 7, -8, 2, -8, 8, -4, 10, -4, 4, -10, 10, -8, 9, -4, 6, -12, 8, -6, 10, -12, 4, -14, 8, -4, 16, -10, 8, -8, 9, -10, 12, -12, 8, -12, 12, -4, 20, -10, 6, -20, 8, -6, 10, -12, 8, -20, 18, -8, 11, -12, 12, -16, 8, -6, 20 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of psi(x^2) * psi(-x)^2 = psi(-x)^4 / phi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.

Expansion of q^(-1/2) * eta(q)^2 * eta(q^4)^4 / eta(q^2)^3 in powers of q.

Euler transform of period 4 sequence [ -2, 1, -2, -3, ...].

G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 128^(1/2) * (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A246954.

G.f.: Product_{k>0} (1 - x^k)^3 * (1 + x^k) * (1 + x^(2*k))^4.

a(n) = (-1)^n * A045828(n). a(2*n) = A213625(n). a(2*n + 1) = - 2 * A213624(n).

EXAMPLE

G.f. = 1 - 2*x + 2*x^2 - 4*x^3 + 3*x^4 - 2*x^5 + 6*x^6 - 4*x^7 + 4*x^8 + ...

G.f. = q - 2*q^2 + 2*q^3 - 4*q^4 + 3*q^5 - 2*q^6 + 6*q^7 - 4*q^8 + 4*q^9 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x]^2/(4 x^(1/2)), {x, 0, n}];

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^4 / eta(x^2 + A)^3, n))};

CROSSREFS

Cf. A045828, A213624, A213625, A246954.

Sequence in context: A316774 A246815 A246836 * A045828 A058526 A112153

Adjacent sequences:  A246950 A246951 A246952 * A246954 A246955 A246956

KEYWORD

sign

AUTHOR

Michael Somos, Sep 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 07:51 EST 2019. Contains 320309 sequences. (Running on oeis4.)