login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Largest number that can be encoded as Product_{i:lambda} prime(i) for a partition lambda of n into distinct parts.
10

%I #18 Feb 07 2017 08:28:00

%S 1,2,3,6,10,15,30,42,70,110,210,330,462,770,1155,2310,2730,4290,6006,

%T 10010,15015,30030,39270,46410,72930,102102,170170,255255,510510,

%U 570570,746130,903210,1385670,1939938,3233230,4849845,9699690,11741730,14804790,17160990

%N Largest number that can be encoded as Product_{i:lambda} prime(i) for a partition lambda of n into distinct parts.

%C The number of (distinct) prime factors in a(n) is A003056(n) = floor((sqrt(1+8*n)-1)/2).

%H Alois P. Heinz, <a href="/A246868/b246868.txt">Table of n, a(n) for n = 0..3000</a>

%F a(n) = A246867(n,A000009(n)).

%e The partitions of n=5 into distinct parts are {[5], [4,1], [3,2]}, encodings give {prime(5), prime(4)*prime(1), prime(3)*prime(2)} = {11, 7*2, 5*3} = {11, 14, 15}. So a(5) = max(11,14,15) = 15.

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p max(b(n, i-1), `if`(i>n, 0, b(n-i, i-1)*ithprime(i)))))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..50);

%t b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Max[b[n, i-1], If[i>n, 0, b[n - i, i-1]*Prime[i]]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Feb 07 2017, translated from Maple *)

%Y Last elements of rows of A246867.

%Y Cf. A000009, A003056.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Sep 05 2014