login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246860 Expected value of trace(O)^(2n), where O is a 4 X 4 orthogonal matrix randomly selected according to Haar measure. 4
1, 3, 15, 105, 903, 8778, 92235, 1023165, 11821953, 141061206, 1727926291, 21634600078, 275950576450, 3576315994020, 46995014634435, 625082431593285, 8403885851894445, 114069364107664350, 1561609592248119645, 21543838447412548410, 299299110959202973710 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The corresponding sequences for 2 X 2, 3 X 3, and 5 X 5 matrices are A001700, A099251, and A247304.

a(n) is the number of triangulations with middle chord of an 2n+2-gon modulo the cyclic action. So a(n) = A000108(n)^2 - A000107(A000108(n)-1). The first part A000108(n)^2 means the cartes of two n+2-gons separated by the middle chord, second part is the duplicated joins need to be removed. - Yuchun Ji, Aug 11 2020

LINKS

Table of n, a(n) for n=1..21.

MathOverflow, Moments of the trace of orthogonal matrices

FORMULA

In the MathOverflow link, Nathaniel Johnston conjectures a(n) = A000108(n)*(A000108(n)+1)/2. - Robert Israel, Jan 17 2020

MAPLE

A246860 := proc (n) return (1/8)*integrate(integrate((cos(x)-cos(y))^2*(2*cos(x)+2*cos(y))^(2*n), y = 0 .. 2*Pi), x = 0 .. 2*Pi)/Pi^2+(1/2)*integrate((1-cos(z)^2)*(2*cos(z))^(2*n), z = 0 .. 2*Pi)/Pi end proc; seq(A246860(n), n = 1 .. 21);

CROSSREFS

Cf. A000108, A001700, A099251, A247304, A247306.

Sequence in context: A067546 A015682 A291744 * A249014 A258498 A189919

Adjacent sequences:  A246857 A246858 A246859 * A246861 A246862 A246863

KEYWORD

nonn

AUTHOR

Nathaniel Johnston, Sep 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 01:17 EDT 2021. Contains 342941 sequences. (Running on oeis4.)