OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/4) * eta(q)^2 * eta(q^4)^7 / (eta(q^2)^4 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ -2, 2, -2, -5, -2, 2, -2, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 16 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246836.
EXAMPLE
G.f. = 1 - 2*x + 3*x^2 - 6*x^3 + 4*x^4 - 4*x^5 + 7*x^6 - 2*x^7 + 8*x^8 + ...
G.f. = q - 2*q^5 + 3*q^9 - 6*q^13 + 4*q^17 - 4*q^21 + 7*q^25 - 2*q^29 + ...
MATHEMATICA
a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q^2]* EllipticTheta[2, 0, I*q^(1/2)]^2/(4*(-q)^(1/4)), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Nov 29 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^7 / (eta(x^2 + A)^4 * eta(x^8 + A)^2), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 04 2014
STATUS
approved