login
Decimal expansion of the Narcissus constant, the second real solution of the equation x^(x-1) = x+1.
2

%I #19 Jan 17 2020 16:09:10

%S 2,3,9,8,3,8,4,3,8,2,7,8,1,6,1,1,4,2,9,3,9,3,8,7,6,8,4,7,5,2,3,8,7,4,

%T 1,9,1,8,0,6,9,9,1,7,7,5,1,6,2,5,6,2,8,2,8,1,9,6,9,1,1,1,0,7,9,4,4,8,

%U 7,7,9,7,4,1,2,1,6,4,1,6,2,3,4,6,4,1,4,5,1,5,4,4,6,6,1,6,5,9,5,3,0,9,4

%N Decimal expansion of the Narcissus constant, the second real solution of the equation x^(x-1) = x+1.

%C The narcissus constant is defined as a number that satisfies a "narcissistic" infinite nested radical equation (see the link).

%H Jean-François Alcover, <a href="/A246825/a246825.gif">Narcissus constant defined with nested radicals</a>

%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 57.

%H Teik-Cheng Lim, <a href="http://dx.doi.org/10.1007/s10910-006-9196-4">Potential energy function based on the narcissus constant, its square and its cube</a>, J. Math. Chem. 43 (2008) 304—313; MR2449420.

%e 2.398384382781611429393876847523874191806991775162562828...

%t digits = 103; x /. FindRoot[x^(x - 1) == x + 1, {x, 2}, WorkingPrecision -> digits + 5] // RealDigits[#, 10, digits]& // First

%K nonn,cons,easy

%O 1,1

%A _Jean-François Alcover_, Sep 04 2014