login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246814 Expansion of phi(-q) * phi(-q^4)^2 in powers of q where phi() is a Ramanujan theta function. 2
1, -2, 0, 0, -2, 8, 0, 0, -4, -10, 0, 0, 8, 8, 0, 0, 6, -16, 0, 0, -8, 16, 0, 0, -8, -10, 0, 0, 0, 24, 0, 0, 12, -16, 0, 0, -10, 8, 0, 0, -8, -32, 0, 0, 24, 24, 0, 0, 8, -18, 0, 0, -8, 24, 0, 0, -16, -16, 0, 0, 0, 24, 0, 0, 6, -32, 0, 0, -16, 32, 0, 0, -12 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of eta(q)^2 * eta(q^4)^4 / (eta(q^2) * eta(q^8)^2) in powers of q.

Euler transform of period 8 sequence [ -2, -1, -2, -5, -2, -1, -2, -3, ...].

a(n) = (-1)^(mod(n,4) = 1) * A116597(n).

a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A212885(n). a(4*n + 1) = -(-1)^n * A005876(n).

EXAMPLE

G.f. = 1 - 2*q - 2*q^4 + 8*q^5 - 4*q^8 - 10*q^9 + 8*q^12 + 8*q^13 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^4]^2, {q, 0, n}]; Table[a[n], {n, 0, 80}]

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^4 / (eta(x^2 + A) * eta(x^8 + A)^2), n))};

CROSSREFS

Cf. A005876, A116597, A212885.

Sequence in context: A066209 A284455 A300222 * A116597 A202496 A165664

Adjacent sequences:  A246811 A246812 A246813 * A246815 A246816 A246817

KEYWORD

sign

AUTHOR

Michael Somos, Sep 03 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)