%I #17 Nov 22 2014 03:48:46
%S 1,5,2,17,14,3,49,62,27,4,129,222,147,44,5,321,702,627,284,65,6,769,
%T 2046,2307,1404,485,90,7,1793,5630,7683,5884,2725,762,119,8,4097,
%U 14846,23811,22012,12805,4794,1127,152,9,9217,37886,69891,75772,53125,24954,7847,1592,189,10
%N Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} A_k*(x-2)^k.
%C Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = A_0*(x-2)^0 + A_1*(x-2)^1 + A_2*(x-2)^2 + ... + A_n*(x-2)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.
%F T(n,0) = n*2^(n+1)+1, for n >= 0.
%F T(n,n-1) = n*(2*n+3), for n >= 1.
%F Row n sums to A014915(n-1) = T(n,0) of A246799.
%e Triangle starts:
%e 1;
%e 5, 2;
%e 17, 14, 3;
%e 49, 62, 27, 4;
%e 129, 222, 147, 44, 5;
%e 321, 702, 627, 284, 65, 6;
%e 769, 2046, 2307, 1404, 485, 90, 7;
%e 1793, 5630, 7683, 5884, 2725, 762, 119, 8;
%e 4097, 14846, 23811, 22012, 12805, 4794, 1127, 152, 9;
%e 9217, 37886, 69891, 75772, 53125, 24954, 7847, 1592, 189, 10;
%e ...
%o (PARI) T(n,k) = (k+1)*sum(i=0,n-k,2^i*binomial(i+k+1,k+1))
%o for(n=0,10,for(k=0,n,print1(T(n,k),", ")))
%Y Cf. A246788, A014106, A000337, A246799.
%K nonn,tabl
%O 0,2
%A _Derek Orr_, Nov 15 2014