login
A246766
Least number m such that there exist exactly n pairs of numbers (a,b), 0 < a < b < m, such that a+b, a+m, and b+m are all squares.
1
30, 120, 194, 282, 870, 1322, 1220, 1442, 2240, 3128, 3842, 3812, 5288, 5378, 6662, 7592, 8408, 6722, 10448, 10922, 12098, 10592, 15248, 17618, 16112, 18722, 20738, 21842, 26888, 29138, 26408, 20162, 28802, 27458, 36758, 30608, 44258, 44072, 33728
OFFSET
1,1
COMMENTS
All terms are even.
EXAMPLE
m=30: (a,b)=6,19; a+b=5^2, a+m=6^2, b+m=7^2;
m=120:
(a,b)=1,24; a+b=5^2, a+m=11^2, b+m=12^2;
(a,b)=24,76; a+b=10^2, a+m=12^2, b+m=14^2.
CROSSREFS
Cf. A242445.
Sequence in context: A256649 A232778 A232775 * A112955 A244636 A290391
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 03 2014
STATUS
approved