login
A246746
Decimal expansion of 'rho', an auxiliary constant associated with the asymptotic number of values of the Euler totient function less than a given number.
4
5, 4, 2, 5, 9, 8, 5, 8, 6, 0, 9, 8, 4, 7, 1, 0, 2, 1, 9, 5, 9, 3, 8, 4, 5, 9, 5, 7, 7, 9, 4, 6, 9, 4, 2, 6, 7, 7, 9, 5, 0, 4, 6, 1, 6, 1, 9, 5, 3, 9, 2, 4, 6, 9, 6, 6, 5, 1, 5, 7, 8, 1, 0, 3, 4, 7, 0, 8, 9, 3, 1, 8, 9, 4, 7, 6, 4, 5, 6, 2, 2, 3, 2, 9, 5, 9, 3, 7, 4, 7, 4, 5, 1, 3, 4, 8, 9, 1, 0, 9, 3
OFFSET
0,1
FORMULA
Rho is the unique solution on [0,1) of the equation F(rho)=1, where F(x) = sum_{k >= 1} ((k+1)*log(k+1) - k*log(k) - 1)*x^k.
EXAMPLE
0.54259858609847102195938459577946942677950461619539246966515781...
MATHEMATICA
digits = 101; F[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*x^k, {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; rho = x /. FindRoot[F[x] == 1, {x, 5/10, 6/10}, WorkingPrecision -> digits + 10]; RealDigits[rho, 10, digits] // First
CROSSREFS
Sequence in context: A213205 A094778 A260849 * A180131 A257972 A222307
KEYWORD
nonn,cons
AUTHOR
STATUS
approved