OFFSET
1,1
COMMENTS
Table starts
.2..12....124.....424......1566.......3876........9368........18768
.2..16....260....1096......5430......15960.......47432.......109552
.2..22....548....2884.....18966......66378......241544.......643048
.2..30...1156....7612.....66294.....276762.....1231304......3780600
.2..40...2436...19992....231414....1152576.....6272072.....22219408
.2..52...5132...52112....807630....4791012....31944440....130526848
.2..68..10812..135776...2818830...19906740...162700376....766650656
.2..90..22780..354428...9838974...82727094...828690200...4502888280
.2.120..47996..926912..34342350..343911336..4220813912..26449024896
.2.160.101124.2426008.119869158.1430080296.21498069128.155366381200
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..1661
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-5)
k=3: a(n) = 2*a(n-1) +a(n-4)
k=4: [order 16]
k=5: a(n) = 3*a(n-1) +a(n-2) +a(n-3) +5*a(n-4) +a(n-5) -a(n-6) -a(n-7)
k=6: [order 23]
k=7: a(n) = 4*a(n-1) +4*a(n-2) +4*a(n-3) +18*a(n-4) +12*a(n-5) -4*a(n-7) -a(n-8)
k=8: [order 24]
k=9: a(n) = 6*a(n-1) +4*a(n-2) +6*a(n-3) +38*a(n-4) +18*a(n-5) -6*a(n-7) -a(n-8)
Empirical for row n:
n=1: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9)
n=2: [order 11]
n=3: [order 13]
n=4: [order 15]
n=5: [order 17]
n=6: [order 19]
n=7: [order 21]
EXAMPLE
Some solutions for n=4 k=4
..3....4....3....1....1....0....2....1....1....0....2....3....2....4....0....0
..3....1....2....4....4....1....0....4....1....0....4....4....4....3....2....0
..3....1....3....1....2....2....1....2....2....1....3....2....1....4....0....0
..4....1....4....4....1....1....1....1....4....0....3....3....4....4....0....0
..4....4....4....1....4....0....0....1....4....0....3....4....4....4....1....0
..4....1....4....1....1....0....0....1....1....2....3....3....1....3....0....2
..3....2....2....2....4....1....2....0....1....0....4....3....1....3....2....1
..4....4....1....1....1....1....0....2....2....1....3....4....2....3....0....0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 02 2014
STATUS
approved