This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246707 Expansion of phi(-q) * phi(-q^2) * phi(-q^3) * phi(-q^6) in powers of q. 1
 1, -2, -2, 2, 6, 4, -14, 0, 6, -2, -12, -8, 42, 4, -16, -4, 6, -4, -50, 8, 36, 0, -24, 16, 42, 2, -28, 2, 48, -12, -84, -16, 6, 8, -36, 0, 150, -12, -40, -4, 36, 12, -112, -8, 72, 4, -48, 0, 42, 14, -62, 4, 84, 4, -158, 16, 48, -8, -60, -8, 252, 4, -64, 0, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of eta(q)^2 * eta(q^2) * eta(q^3)^2 * eta(q^6) / (eta(q^4) * eta(q^12)) in powers of q. G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 384 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A033765. a(2*n + 1) = -2 * A030188(n). EXAMPLE G.f. = 1 - 2*q - 2*q^2 + 2*q^3 + 6*q^4 + 4*q^5 - 14*q^6 + 6*q^8 - 2*q^9 + ... MATHEMATICA eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[eta[q]^2* eta[q^2]*eta[q^3]^2*eta[q^6]/(eta[q^4]*eta[q^12]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 18 2018 *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^6 + A) / (eta(x^4 + A) * eta(x^12 + A)), n))}; (PARI) q='q+O('q^99); Vec(eta(q)^2*eta(q^2)*eta(q^3)^2*eta(q^6)/(eta(q^4)*eta(q^12))) \\ Altug Alkan, Apr 18 2018 (MAGMA) A := Basis( ModularForms( Gamma0(24), 2), 26); A[1] - 2*A[2] - 2*A[3] + 2*A[4] + 6*A[5] + 4*A[6] - 14*A[7] + 6*A[8]; CROSSREFS Cf. A030188, A033765. Sequence in context: A059885 A259689 A300413 * A211391 A241543 A210740 Adjacent sequences:  A246704 A246705 A246706 * A246708 A246709 A246710 KEYWORD sign AUTHOR Michael Somos, Sep 01 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 05:43 EDT 2018. Contains 315273 sequences. (Running on oeis4.)