login
A246673
Decimal expansion of 'c', an optimal stopping constant associated with the two choice case.
1
1, 1, 6, 5, 6, 2, 3, 2, 8, 7, 7, 3, 1, 6, 2, 2, 7, 7, 2, 0, 8, 2, 1, 5, 2, 0, 2, 1, 1, 0, 7, 5, 4, 0, 4, 0, 8, 2, 5, 5, 4, 9, 1, 3, 4, 5, 9, 6, 3, 3, 4, 2, 1, 0, 3, 0, 1, 9, 0, 0, 5, 3, 3, 6, 8, 9, 2, 2, 1, 4, 1, 5, 7, 7, 7, 7, 3, 4, 1, 2, 0, 7, 5, 2, 0, 1, 9, 1, 9, 6, 4, 8, 9, 9, 2, 5, 5, 9, 9, 2, 6, 8
OFFSET
1,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361.
LINKS
David Assaf, Larry Goldstein, Ester Samuel-Cahn, Two choice optimal stopping.
Eric Weisstein's MathWorld, Sultan's Dowry Problem.
Wikipedia, Secretary problem.
FORMULA
2*xi/(xi + 2), where xi is A246672.
EXAMPLE
1.165623287731622772082152021107540408255491345963342103019...
MATHEMATICA
xi = x /. FindRoot[(2/x + 1)*Log[x/2 + 1] == 3/2, {x, 3}, WorkingPrecision -> 102]; c = 2*xi/(xi + 2); RealDigits[c] // First
CROSSREFS
Cf. A246672.
Sequence in context: A330065 A191220 A356793 * A220190 A231738 A198829
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved