

A246665


Decimal expansion of the asymptotic probability of success in the fullinformation secretary problem with uniform distribution when the number of applicants is also uniformly distributed.


4



4, 3, 5, 1, 7, 0, 8, 0, 5, 5, 8, 0, 1, 2, 7, 6, 5, 8, 0, 5, 9, 1, 8, 9, 9, 1, 2, 8, 4, 7, 8, 5, 8, 4, 1, 0, 4, 2, 7, 9, 6, 2, 5, 9, 4, 7, 5, 3, 4, 7, 0, 2, 4, 7, 0, 2, 9, 7, 9, 1, 2, 3, 0, 4, 4, 3, 9, 0, 6, 6, 5, 8, 7, 5, 4, 4, 3, 0, 3, 3, 5, 7, 8, 4, 9, 9, 7, 6, 6, 2, 8, 6, 8, 5, 0, 2, 6, 5, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

In this variant of the secretary problem, the applicants' values are independently distributed on a known interval, like in A242674; and the number of applicants is itself a random variable with uniform distribution on 1..n (and then the limit n > is taken), like in A325905. So we have more information than in the variant considered in A325905 but less information then in the variant considered in A242674. Hence A325905 < this constant < A242674.  Andrey Zabolotskiy, Sep 14 2019


REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361.


LINKS

Table of n, a(n) for n=0..98.
Steven R. Finch, Errata and Addenda to Mathematical Constants. p. 45.
Steven R. Finch, Errata and Addenda to Mathematical Constants, January 22, 2016. [Cached copy, with permission of the author]
Zdzisław Porosiński, On best choice problems having similar solutions, Statistics & Probability Letters, 56 (2002), 321327.
Eric Weisstein's MathWorld, Sultan's Dowry Problem
Wikipedia, Secretary problem


FORMULA

(1  e^a)*Ei(a)  (e^(a) + a*Ei(a))*(gamma + log(a)  Ei(a)), where a is A246664, gamma is Euler's constant and Ei is the exponential integral function.


EXAMPLE

0.43517080558012765805918991284785841042796259475347024702979123...


MATHEMATICA

a = x /. FindRoot[E^x*(1  EulerGamma  Log[x] + ExpIntegralEi[x])  (EulerGamma + Log[x]  ExpIntegralEi[x]) == 1, {x, 2}, WorkingPrecision > 102]; (1  E^a)*ExpIntegralEi[a]  (E^a + a*ExpIntegralEi[a])*(EulerGamma + Log[a]  ExpIntegralEi[a]) // RealDigits // First


CROSSREFS

Cf. A246664, A068985, A325905, A242674.
Sequence in context: A292612 A316254 A029934 * A274260 A011397 A081665
Adjacent sequences: A246662 A246663 A246664 * A246666 A246667 A246668


KEYWORD

nonn,cons,easy


AUTHOR

JeanFrançois Alcover, Sep 01 2014


STATUS

approved



