This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246664 Decimal expansion of 'a', an auxiliary constant associated with the asymptotic probability of success in the secretary problem when the number of applicants is uniformly distributed. 2
 2, 1, 1, 9, 8, 2, 4, 4, 0, 9, 8, 9, 2, 0, 6, 3, 6, 4, 9, 4, 6, 4, 0, 0, 5, 3, 8, 3, 0, 0, 7, 4, 0, 9, 1, 5, 4, 5, 5, 4, 4, 6, 3, 9, 6, 3, 2, 5, 3, 4, 1, 9, 8, 5, 4, 0, 9, 2, 0, 2, 7, 5, 4, 2, 6, 7, 6, 2, 7, 7, 4, 3, 8, 7, 1, 8, 5, 4, 8, 7, 9, 8, 2, 3, 9, 8, 7, 3, 8, 6, 2, 6, 6, 3, 0, 3, 2, 3, 8, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361. LINKS Steven R. Finch, Errata and Addenda to Mathematical Constants. p. 45. Steven R. Finch, Errata and Addenda to Mathematical Constants, January 22, 2016. [Cached copy, with permission of the author] Eric Weisstein's MathWorld, Sultan's Dowry Problem. Wikipedia, Secretary problem. FORMULA e^a*(1 - gamma - log(a) + Ei(-a)) - (gamma + log(a) - Ei(a)) = 1, where gamma is Euler's constant and Ei is the exponential integral function. EXAMPLE 2.119824409892063649464005383007409154554463963253419854092... MATHEMATICA a /. FindRoot[E^a*(1 - EulerGamma - Log[a] + ExpIntegralEi[-a]) - (EulerGamma + Log[a] - ExpIntegralEi[a]) == 1, {a, 2}, WorkingPrecision -> 100] // RealDigits // First CROSSREFS Cf. A246665. Sequence in context: A156883 A019803 A214506 * A229962 A141601 A108558 Adjacent sequences:  A246661 A246662 A246663 * A246665 A246666 A246667 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Sep 01 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 16:16 EDT 2019. Contains 328101 sequences. (Running on oeis4.)