login
A246659
a(n) = binomial(n-h,h)*hypergeometric([h-n/2,h-(n-1)/2],[1],4), h = floor(n/4).
0
1, 1, 3, 7, 9, 28, 95, 306, 285, 1071, 3948, 14148, 11844, 47160, 182655, 690580, 547965, 2244385, 8961953, 35016345, 26885859, 112052304, 456606332, 1824478488, 1369818996, 5777515212, 23884958520, 97002706248, 71654875560, 304865648208, 1273989485439
OFFSET
0,3
COMMENTS
Also middle column of A132885.
a(n) is the k-th term of n-th row of triangle of A132885 where k = floor(n/4). - Altug Alkan, Nov 29 2015
FORMULA
a(n) = A132885(n, floor(n/4)), that is, a(n) = A132885(A054925(n+2) - 1). - Altug Alkan, Nov 29 2015
MAPLE
a := proc(n) local h; h := iquo(n, 4); binomial(n-h, h)*hypergeom([h-n/2, h-n/2+1/2], [1], 4) end: seq(round(evalf(a(n), 99)), n=0..30);
MATHEMATICA
a[n_] := With[{h = Quotient[n, 4]}, Binomial[n-h, h]*Hypergeometric2F1[h-n/2, h-(n-1)/2, 1, 4]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 18 2024 *)
CROSSREFS
Cf. A132885.
Sequence in context: A249664 A057840 A339614 * A072087 A328462 A376337
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 18 2014
STATUS
approved