%I #7 Oct 03 2014 13:38:19
%S 0,1,0,2,1,0,9,4,1,0,56,25,6,1,0,457,204,49,8,1,0,4626,2065,496,81,10,
%T 1,0,55969,24984,6001,980,121,12,1,0,788192,351841,84510,13801,1704,
%U 169,14,1,0,12667041,5654440,1358161,221796,27385,2716,225,16,1,0
%N Triangle read by rows: T(n,k) = K(n,1)*I(k,1) - (-1)^(n+k)*I(n,1)* K(k,1), where I(n,x) and K(n,x) are Bessel functions; 0<=k<=n.
%F T(n, 0) = A036243(n-1) for n>=2.
%F T(n, 1) = A036242(n-1) for n>=2.
%e 0;
%e 1, 0;
%e 2, 1, 0;
%e 9, 4, 1, 0;
%e 56, 25, 6, 1, 0;
%e 457, 204, 49, 8, 1, 0;
%e 4626, 2065, 496, 81, 10, 1, 0;
%e 55969, 24984, 6001, 980, 121, 12, 1, 0;
%e 788192, 351841, 84510, 13801, 1704, 169, 14, 1, 0;
%p T := (n, k) -> BesselK(n,1)*BesselI(k,1) - (-1)^(n+k)*BesselI(n,1)* BesselK(k,1);
%p seq(lprint(seq(round(evalf(T(n, k), 99)), k=0..n)), n=0..8);
%o (Sage)
%o T = lambda n, k: bessel_K(n,1)*bessel_I(k,1) - (-1)^(n+k)*bessel_I(n,1)* bessel_K(k,1)
%o for n in range(9): [T(n,k).n().round() for k in (0..n)]
%Y Cf. A036242, A036243.
%K nonn,tabl
%O 0,4
%A _Peter Luschny_, Sep 14 2014