login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246631 Number of integer solutions to x^2 + 2*y^2 + 2*z^2 = n. 2
1, 2, 4, 8, 6, 8, 8, 0, 12, 10, 8, 24, 8, 8, 16, 0, 6, 16, 12, 24, 24, 16, 8, 0, 24, 10, 24, 32, 0, 24, 16, 0, 12, 16, 16, 48, 30, 8, 24, 0, 24, 32, 16, 24, 24, 24, 16, 0, 8, 18, 28, 48, 24, 24, 32, 0, 48, 16, 8, 72, 0, 24, 32, 0, 6, 32, 32, 24, 48, 32, 16, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Theta series of quadratic form with Gram matrix [ 1, 0, 0; 0, 2, 0; 0, 0, 2 ].

Expansion of phi(q) * phi(q^2)^2 = phi(-q^4)^4 / phi(-q) in powers of q where phi() is a Ramanujan theta function.

Expansion of eta(q^2) * eta(q^4)^8 / (eta(q)^2 * eta(q^8)^4) in powers of q.

Euler transform of period 8 sequence [ 2, 1, 2, -7, 2, 1, 2, -3, ...].

G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 4 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A014455.

G.f.: theta_3(q) * theta_3(q^2)^2.

G.f.: Product{k>0} (1 - x^(2*k)) * (1 - x^(4*k))^8 / ((1 - x^k)^2 * (1 - x^(8*k))^4).

G.f.: Product{k>0} (1 + x^(2*k)) * (1 + x^k)^2 * (1 - x^(4*k))^3 / (1 + x^(4*k))^4.

a(n) = (-1)^floor((n+1) / 2) * A212885(n) = abs(A212885(n)).

a(n) = A033717(2*n). a(2*n) = A014455(n). a(2*n + 1) = 2 * A246811(n).

a(4*n) = A005875(n). a(4*n + 1) = 2 * A045834(n). a(4*n + 2) = 4 * A045828(n).

a(8*n) = A004015(n). a(8*n + 1) = 2 * A213022(n). a(8*n + 2) = 4 * A213625(n). a(8*n + 3) = 8 * A008443(n). a(8*n + 4) = 2 * A045826(n). a(8*n + 5) = 8 * A045831(n). a(8*n + 6) = 8 * A213624(n). a(8*n + 7) = 0.

EXAMPLE

G.f. = 1 + 2*q + 4*q^2 + 8*q^3 + 6*q^4 + 8*q^5 + 8*q^6 + 12*q^8 + 10*q^9 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2]^2, {q, 0, n}];

PROG

(PARI) {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0, 0; 0, 2, 0; 0, 0, 2], n)[n])};

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^8 / (eta(x + A)^2 * eta(x^8 + A)^4), n))};

(MAGMA) A := Basis( ModularForms( Gamma0(8), 3/2), 80); A[1] + 2*A[2];

CROSSREFS

Cf. A004015, A005875, A008443, A014455, A033717, A045826, A045828, A045831, A045834, A212885, A213022, A213624, A213625, A246811.

Sequence in context: A246821 A212885 A319078 * A320153 A138284 A175156

Adjacent sequences:  A246628 A246629 A246630 * A246632 A246633 A246634

KEYWORD

nonn

AUTHOR

Michael Somos, Aug 31 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 22:37 EST 2019. Contains 329782 sequences. (Running on oeis4.)