This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246571 G.f.: Sum_{n>=0} x^n / (1-x)^(4*n+3) * [Sum_{k=0..2*n+1} C(2*n+1,k)^2 * x^k]^2. 5
 1, 6, 39, 340, 3041, 28718, 279987, 2788464, 28256709, 290124182, 3010689527, 31516942060, 332347297141, 3526399820374, 37616896717155, 403127408462816, 4337723615579781, 46842172878701486, 507454305359968827, 5513119883595629556, 60050379276555861857, 655611405802102543086 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A bisection of A246563. Self-convolution of A246573. LINKS Vaclav Kotesovec, Recurrence (of order 8) FORMULA a(n) = Sum_{k=0..n} Sum_{j=0..k} C(2*n-k-j+1,k)^2 * C(k,j)^2. EXAMPLE G.f.: A(x) = 1 + 6*x + 39*x^2 + 340*x^3 + 3041*x^4 + 28718*x^5 + 279987*x^6 +... where A(x) = 1/(1-x)^3 * (1 + x)^2 + x/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3)^2 + x^2/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2 + x^3/(1-x)^15 * (1 + 7^2*x + 21^2*x^2 + 35^2*x^3 + 35^2*x^4 + 21^2*x^5 + 7^2*x^6 + x^7)^2 +... The square-root of the g.f. is an integer series: A(x)^(1/2) = 1 + 3*x + 15*x^2 + 125*x^3 + 1033*x^4 + 9385*x^5 + 88531*x^6 + 858739*x^7 + 8517503*x^8 + 85867417*x^9 +...+ A246573(n)*x^n +... MATHEMATICA Table[Sum[Sum[Binomial[2*n-k-j+1, k]^2 * Binomial[k, j]^2, {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 02 2014 *) PROG (PARI) /* By definition: */ {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(4*m+3) * sum(k=0, 2*m+1, binomial(2*m+1, k)^2 * x^k)^2 +x*O(x^n)); polcoeff(A, n)} for(n=0, 35, print1(a(n), ", ")) (PARI) /* From a formula for a(n): */ {a(n)=sum(k=0, n, sum(j=0, min(k, 2*n-2*k+1), binomial(2*n-k-j+1, k)^2 * binomial(k, j)^2 ))} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A246563, A246570, A246572, A246573. Sequence in context: A058191 A113347 A265953 * A031972 A308861 A124577 Adjacent sequences:  A246568 A246569 A246570 * A246572 A246573 A246574 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 30 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 22:06 EST 2019. Contains 329963 sequences. (Running on oeis4.)