login
Number of endofunctions on [n] whose cycle lengths are divisors of 9.
2

%I #8 Oct 26 2014 17:30:13

%S 1,1,3,18,157,1776,24687,407464,7792857,169594560,4141165051,

%T 112178655744,3339749183157,108422228887168,3812520677598375,

%U 144372964560581376,5858088633723823153,253575577033176047616,11664031615012086920307,568166632439929892761600

%N Number of endofunctions on [n] whose cycle lengths are divisors of 9.

%H Alois P. Heinz, <a href="/A246529/b246529.txt">Table of n, a(n) for n = 0..350</a>

%F E.g.f.: exp(Sum_{d|9} (-LambertW(-x))^d/d).

%F a(n) - A246523(n) is a multiple of 40320. - _M. F. Hasler_, Oct 26 2014

%p with(numtheory):

%p egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):

%p a:= n-> n!*coeff(series(egf(9), x, n+1), x, n):

%p seq(a(n), n=0..25);

%p # second Maple program:

%p with(combinat):

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)*

%p (i-1)!^j, j=0..`if`(irem(9, i)=0, n/i, 0))))

%p end:

%p a:= n-> add(b(j, min(9, j))*n^(n-j)*binomial(n-1, j-1), j=0..n):

%p seq(a(n), n=0..25);

%Y Column k=9 of A246522.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Aug 28 2014