login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246507 a(n) = 70*(n+1)*binomial(2*n+1,n+1)/(n+5). 1
14, 70, 300, 1225, 4900, 19404, 76440, 300300, 1178100, 4618900, 18106088, 70984095, 278369000, 1092063000, 4286142000, 16830250920, 66118842900, 259878874500, 1021939149000, 4020523757250, 15824781508536, 62313700079400, 245478212434000, 967428110493000, 3814113125277000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

4*a(n+1) is the number of annular noncrossing permutations of parameter 4, see the references.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

B. Collins, J. A. Mingo, P. Sniady, and R. Speicher, Second Order Freeness and Fluctuations of Random Matrices III. Higher order freeness and free cumulants, Documenta Mathematica, vol.12, 1 (2007).

J. Mingo and A. Nica, Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices, arXiv:math/0303312 [math.OA], 2003.

J. Mingo and A. Nica, Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices, Int. Math. Res. Not., vol.28, 1413 (2004).

FORMULA

O.g.f.: 2*(1-sqrt(1-4*z)-2*z-2*z^2-4*z^3-10*z^4)/(sqrt(1-4*z) *4*z^5).

Representation as the n-th moment of a signed function w(x)=2*sqrt(x)*(x^4-2*x^3-2*x^2-4*x-10)/(4*Pi*sqrt(4-x)) on the segment x=(0,4), in Maple notation: a(n) = int(x^n*w(x), x=0..4). The function w(x) -> 0 for x -> 0, and w(x) -> infinity for x->4.

a(n) ~ (35/65536)*4^n*(-755913243+151182552*n - 30236416*n^2 + 6047744*n^3 - 1212416*n^4 + 262144*n^5)/(n^(11/2)*sqrt(Pi)).

Another asymptotic series starts: a(n) ~ exp(n*log(4) + log((70*(2*n+1))/(n+5)) - log(Pi*n)/2 - 1/(8*n)). - Peter Luschny, Aug 28 2014

n*(n+5)*a(n) -2*(n+4)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jun 14 2016

MATHEMATICA

Table[70 (n+1) Binomial[2 n + 1, n + 1]/(n + 5), {n, 0, 30}] (* Vincenzo Librandi, Aug 29 2014 *)

PROG

(MAGMA) [70*(n+1)*Binomial(2*n+1, n+1)/(n+5): n in [0..30]]; // Vincenzo Librandi, Aug 29 2014

(PARI) for(n=0, 25, print1(70*(n+1)*binomial(2*n+1, n+1)/(n+5), ", ")) \\ G. C. Greubel, Apr 06 2017

CROSSREFS

Cf. A001791, A007946, A078820.

Sequence in context: A213160 A268399 A034554 * A034562 A222989 A245950

Adjacent sequences:  A246504 A246505 A246506 * A246508 A246509 A246510

KEYWORD

nonn

AUTHOR

Karol A. Penson, Aug 27 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 23 11:46 EDT 2017. Contains 290995 sequences.