This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246459 a(n) = sum_{k=0..n} C(n,k)^2*C(2k,k)*(2k+1), where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!). 8
 1, 7, 55, 465, 4047, 35673, 316521, 2819295, 25173855, 225157881, 2016242265, 18070920255, 162071863425, 1454320387575, 13055422263255, 117237213829953, 1053070838993151, 9461217421304505, 85019389336077225, 764113545253570191, 6868417199986308129 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Zhi-Wei Sun proved that for any n > 0 we have sum_{k=0}^{n-1} a(k) = n^2*A086618(n-1), and (sum_{k=0}^{n-1}a(k,x))/n is a polynomial with integer coefficients, where a(k,x) = sum_{j=0..k}C(k,j)^2*C(2j,j)*(2j+1)*x^j. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 0..160 Zhi-Wei Sun, Two new kinds of numbers and their arithmetic properties, arXiv:1408.5381, 2014. FORMULA Recurrence (obtained via the Zeilberger algorithm): 9*(n+1)^2*a(n) - (19*n^2+74*n+87)*a(n+1) + (n+3)*(11*n+29)*a(n+2) - (n+3)^2*a(n+3) = 0. a(n) ~ 3^(2*n+1/2) / Pi. - Vaclav Kotesovec, Aug 27 2014 EXAMPLE a(2) = 55 since sum_{k=0,1,2} C(2,k)^2*C(2k,k)(2k+1) = 1 + 8*3 + 6*5 = 55. MAPLE A246459:=n->add(binomial(n, k)^2*binomial(2*k, k)*(2*k+1), k=0..n): seq(A246459(n), n=0..20); # Wesley Ivan Hurt, Aug 26 2014 MATHEMATICA a[n_]:=Sum[Binomial[n, k]^2*Binomial[2k, k](2k+1), {k, 0, n}] Table[a[n], {n, 0, 20}] CROSSREFS Cf. A086618, A245769, A246065, A246138. Sequence in context: A224274 A096951 A113714 * A152262 A078018 A108628 Adjacent sequences:  A246456 A246457 A246458 * A246460 A246461 A246462 KEYWORD nonn AUTHOR Zhi-Wei Sun, Aug 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 17:24 EST 2019. Contains 319399 sequences. (Running on oeis4.)