This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246418 Number of collections F of subsets of {1,2,...,n} whose union is itself an element of F. 2

%I

%S 1,3,13,159,33337,2147648859,9223372049740171909,

%T 170141183460469231796250908018965844535,

%U 57896044618658097711785492504343953927996121800504035873840544850835832773873

%N Number of collections F of subsets of {1,2,...,n} whose union is itself an element of F.

%C Equivalently, the number of partial orders (on some subset of the powerset of {1,2,...,n} ordered by set inclusion) that contain a greatest element.

%H Alois P. Heinz, <a href="/A246418/b246418.txt">Table of n, a(n) for n = 0..11</a>

%F a(n) = Sum_{k=0..n} C(n,k)*2^(2^k-1).

%F a(n) = 2^(2^n) - A246537(n).

%e a(2) = 13 because there are 16 families of subsets of {1,2}. All of these contain their union except: {}, {{1},{2}}, {{},{1},{2}}. 16-3=13.

%t nn = 9; Table[Sum[Binomial[n, i] 2^(2^i - 1), {i, 0, n}], {n, 0, nn}]

%o (PARI) a(n)=sum(k=0,n, binomial(n,k)*2^(2^k-1));

%Y Cf. A246537.

%K nonn

%O 0,2

%A _Geoffrey Critzer_, Aug 25 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 17:33 EDT 2019. Contains 323444 sequences. (Running on oeis4.)