This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246361 Numbers n such that if 2n-1 = product_{k >= 1} (p_k)^(c_k), then n >= product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k). 12
 1, 2, 3, 5, 8, 11, 13, 14, 17, 18, 23, 25, 26, 28, 32, 33, 38, 39, 41, 43, 50, 53, 58, 59, 61, 63, 68, 73, 74, 77, 83, 86, 88, 93, 94, 95, 98, 104, 113, 116, 122, 123, 128, 131, 137, 138, 140, 143, 149, 158, 163, 167, 172, 173, 176, 179, 182, 185, 188, 193, 194, 200, 203, 212, 213, 215, 218, 221, 228, 230, 233 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers n such that A064216(n) <= n. Numbers n such that A064989(2n-1) <= n. The sequence grows as:       a(100) = 332      a(1000) = 3207     a(10000) = 34213    a(100000) = 340703   a(1000000) = 3388490 suggesting that overall, less than one third of natural numbers appear in this sequence, and more than two thirds in the complement, A246362. See also comments in the latter. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 EXAMPLE 1 is present, as 2*1 - 1 = empty product = 1. 12 is not present, as (2*12)-1 = 23 = p_9, and p_8 = 19, with 12 < 19. 14 is present, as (2*14)-1 = 27 = p_2^3 = 8, and 14 >= 8. PROG (PARI) default(primelimit, 2^30); A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)}; A064216(n) = A064989((2*n)-1); isA246361(n) = (A064216(n) <= n); n = 0; i = 0; while(i < 10000, n++; if(isA246361(n), i++; write("b246361.txt", i, " ", n))); (Scheme, with Antti Karttunen's IntSeq-library) (define A246361 (MATCHING-POS 1 1 (lambda (n) (<= (A064216 n) n)))) CROSSREFS Complement: A246362. Union of A246371 and A048674. Subsequence: A246360. Cf. A000040, A064216, A064989, A246281. Sequence in context: A298205 A117725 A106637 * A228855 A171048 A209292 Adjacent sequences:  A246358 A246359 A246360 * A246362 A246363 A246364 KEYWORD nonn AUTHOR Antti Karttunen, Aug 24 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 14 02:19 EST 2019. Contains 329108 sequences. (Running on oeis4.)