login
a(1) = 1, then A007051 ((3^n)+1)/2 interleaved with A057198 (5*3^(n-1)+1)/2.
10

%I #27 Sep 27 2022 12:05:14

%S 1,2,3,5,8,14,23,41,68,122,203,365,608,1094,1823,3281,5468,9842,16403,

%T 29525,49208,88574,147623,265721,442868,797162,1328603,2391485,

%U 3985808,7174454,11957423,21523361,35872268,64570082,107616803,193710245,322850408,581130734

%N a(1) = 1, then A007051 ((3^n)+1)/2 interleaved with A057198 (5*3^(n-1)+1)/2.

%C Also record values in A048673.

%H Antti Karttunen, <a href="/A246360/b246360.txt">Table of n, a(n) for n = 1..64</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3).

%F a(1) = 1, a(2n) = (3^n+1)/2, a(2n+1) = (5 * 3^(n-1)+1)/2.

%F a(n) = A048673(A029744(n)).

%F a(n) = A087503(n-3) + 2 for n >= 3. - _Peter Kagey_, Nov 30 2019

%F G.f.: x -x^2*(-2-x+4*x^2) / ( (x-1)*(3*x^2-1) ). - _R. J. Mathar_, Sep 23 2014

%t LinearRecurrence[{1, 3, -3}, {1, 2, 3, 5}, 40] (* _Hugo Pfoertner_, Sep 27 2022 *)

%o (Scheme)

%o (define (A246360 n) (cond ((<= n 1) n) ((even? n) (/ (+ 1 (A000244 (/ n 2))) 2)) (else (/ (+ 1 (* 5 (A000244 (/ (- n 3) 2)))) 2))))

%Y Even bisection: A007051 from A007051(1) onward: [2, 5, 14, 41, ...]

%Y Odd bisection: 1 followed by A057198.

%Y A029744 gives the corresponding record positions in A048673.

%Y A247284 gives the maximum values of A048673 between these records and A247283 gives the positions where they occur.

%Y Subsequence of A246361.

%Y Cf. A000244, A193652, A246347.

%K nonn,easy

%O 1,2

%A _Antti Karttunen_, Aug 24 2014