login
A246343
a(0) = 12, after which, if (2*a(n-1)) - 1 = product_{k >= 1} (p_k)^(c_k) then a(n) = product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).
5
12, 19, 31, 59, 44, 46, 55, 107, 134, 166, 317, 398, 282, 557, 470, 622, 763, 531, 1051, 1267, 1807, 3607, 7211, 4522, 9041, 3700, 3725, 3982, 7951, 15889, 30053, 24018, 24189, 34535, 14630, 12916, 21769, 27599, 24524, 32678, 26094, 43073, 34446, 68881, 116479, 143359, 275221, 550439, 667462, 1051489
OFFSET
0,1
COMMENTS
Iterates of A064216 starting from value 12.
All numbers from 1 to 11 are in finite cycles of A048673/A064216, thus 12 is the smallest number in this cycle, regardless of whether it is infinite or finite.
LINKS
FORMULA
a(0) = 12, a(n) = A064216(a(n-1)).
EXAMPLE
Start with a(0) = 12; then after each new term is obtained by doubling the previous term, from which one is subtracted, after which each prime factor is replaced with the previous prime:
12 -> ((2*12)-1) = 23 = p_9, and p_8 = 19, thus a(1) = 19.
19 -> ((2*19)-1) = 37 = p_12, and p_11 = 31, thus a(2) = 31.
31 -> ((2*31)-1) = 61 = p_18, and p_17 = 59, thus a(3) = 59.
59 -> ((2*59)-1) = 117 = 3*3*13 = p_2 * p_2 * p_6, and p_1 * p_1 * p_5 = 2*2*11 = 44, thus a(4) = 44.
PROG
(PARI)
default(primelimit, 2^30);
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A064216(n) = A064989((2*n)-1);
k = 12; for(n=0, 1001, write("b246343.txt", n, " ", k); k = A064216(k));
(Scheme, with memoization-macro definec)
(definec (A246343 n) (if (zero? n) 12 (A064216 (A246343 (- n 1)))))
CROSSREFS
A246342 gives the terms of the same cycle when going to the opposite direction from 12.
Sequence in context: A043882 A205718 A117539 * A136770 A155574 A272100
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 24 2014
STATUS
approved