This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246313 G.f.: (-1+6*x)/(1-3*x-2*x^2). 1
 -1, 3, 7, 27, 95, 339, 1207, 4299, 15311, 54531, 194215, 691707, 2463551, 8774067, 31249303, 111296043, 396386735, 1411752291, 5028030343, 17907595611, 63778847519, 227151733779, 809012896375, 2881342156683, 10262052262799, 36548841101763, 130170627830887, 463609565696187, 1651169952750335 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Encountered during the analysis of a certain cellular automaton. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,2). FORMULA a(n) = 3*a(n-1) + 2*a(n-2) with a(0)=-1, a(1)=3. a(n) = -(17+9*sqrt(17))/34*(3/2-sqrt(17)/2)^n+(-17+9*sqrt(17))/34*(3/2+sqrt(17)/2)^n.  For n >= 3, a(n) = round(-17+9*sqrt(17))/34*(3/2+sqrt(17)/2)^n). - Robert Israel, Aug 27 2014 a(n) = 6*A007482(n-1)+A007482(n). - R. J. Mathar, Feb 27 2019 MAPLE a:= LRETools[REtoproc](a(n)=3*a(n-1)+2*a(n-2), a(n), {a(0)=-1, a(1)=3}): seq(a(i), i=0..100); # Robert Israel, Aug 27 2014 MATHEMATICA CoefficientList[Series[(6 x - 1)/(1 - 3 x - 2 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 27 2014 *) PROG (MAGMA) I:=[-1, 3]; [n le 2 select I[n] else 3*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 27 2014 (PARI) Vec((-1+6*x)/(1-3*x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 02 2014 CROSSREFS Sequence in context: A081562 A216174 A260464 * A003083 A062795 A062363 Adjacent sequences:  A246310 A246311 A246312 * A246314 A246315 A246316 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Aug 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 22:02 EST 2019. Contains 330012 sequences. (Running on oeis4.)