login
A246244
Sum of ninth powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
2
1, 1, 514, 10195797, 2703788516356, 5361940142039062505, 55063667396158825603112136, 2272169230481993564658922073502463, 312894608313254360747865383525129561090056, 124773193097402414339622625011223384066643153613969
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] (n!)^9 * (Sum_{j=0..n} x^j/(j!)^9)^n.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^9, j=0..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..15);
CROSSREFS
Column k=9 of A245397.
Sequence in context: A271760 A228999 A168126 * A257087 A254643 A322883
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 19 2014
STATUS
approved