login
Number of endofunctions on [n] where the largest cycle length equals 4.
2

%I #9 Dec 28 2020 09:53:11

%S 6,150,3240,72030,1719060,44520840,1252364400,38167414560,

%T 1255558958280,44404434904830,1681726757430720,67953913291104750,

%U 2919509551303952880,132943540577100047760,6397727538671302783680,324511272091351156939200,17306903935107005765263200

%N Number of endofunctions on [n] where the largest cycle length equals 4.

%H Alois P. Heinz, <a href="/A246214/b246214.txt">Table of n, a(n) for n = 4..200</a>

%F a(n) ~ (4*exp(25/12) - 3*exp(11/6)) * n^(n-1). - _Vaclav Kotesovec_, Aug 21 2014

%p with(combinat):

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*

%p b(n-i*j, i-1), j=0..n/i)))

%p end:

%p A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):

%p a:= n-> A(n, 4) -A(n, 3):

%p seq(a(n), n=4..25);

%t multinomial[n_, k_List] := n!/Times @@ (k!);

%t b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i - 1], {j, 0, n/i}]]];

%t A[n_, k_] := Sum[Binomial[n-1, j-1] n^(n-j) b[j, Min[j, k]], {j, 0, n}];

%t a[n_] := A[n, 4] - A[n, 3];

%t a /@ Range[4, 25] (* _Jean-François Alcover_, Dec 28 2020, after _Alois P. Heinz_ *)

%Y Column k=4 of A241981.

%K nonn

%O 4,1

%A _Alois P. Heinz_, Aug 19 2014