

A246133


Binomial(2n, n)  2 mod n^3.


6



0, 4, 18, 4, 0, 58, 0, 68, 504, 754, 0, 1562, 0, 2062, 2518, 580, 0, 922, 0, 818, 6535, 7990, 0, 12058, 250, 4398, 2691, 10358, 0, 12422, 0, 16964, 10666, 29482, 3680, 42818, 0, 41158, 19791, 13618, 0, 54430, 0, 71942, 40993, 73006, 0, 12058, 3430, 122254, 98278, 127494, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

When e=3, the numbers binomial(2n, n)  2 mod n^e are 0 whenever n is a prime greater than 3 (Wolstenholme's theorem; see A246130 for introductory comments). No composite number n for which a(n)=0 was found up to n=431500 (conjecture: there are none, and a(n)=0 for n>3 is a deterministic primality test).


LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..10000
Wikipedia, Wolstenholme's theorem


FORMULA

For any prime p>3, a(p)=0.


EXAMPLE

a(7)= (binomial(14,7)2) mod 7^3 = (34322) mod 343 = 10*343 mod 343 = 0.


MAPLE

seq(binomial(2*n, n)2 mod n^3, n=1..100); # Robert Israel, Aug 17 2014


PROG

(PARI) a(n) = (binomial(2*n, n)2)%n^3


CROSSREFS

Cf. A000984, A246130 (e=1), A246132 (e=2), A246134 (e=4).
Sequence in context: A077275 A059903 A227540 * A205014 A204936 A158320
Adjacent sequences: A246130 A246131 A246132 * A246134 A246135 A246136


KEYWORD

nonn


AUTHOR

Stanislav Sykora, Aug 16 2014


STATUS

approved



