login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246119 a(n) = least k such that k^(2^n)*(k^(2^n)-1)+1 is prime. 4
2, 2, 2, 5, 4, 2, 5, 196, 14, 129, 424, 484, 22, 5164, 7726, 13325, 96873, 192098 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Numbers of the form k^m*(k^m-1)+1 with m > 0, k > 1 may be primes only if m is 3-smooth, because these numbers are Phi(6,k^m) and cyclotomic factorizations apply to any prime divisors >3. This series is a subset of A205506 with only m=2^n.

Trivially, a(n) <= a(n+1)^2. This upper bound, indeed, holds for a(4) = a(5)^2, a(7) = a(8)^2 and a(11) = a(12)^2.

The numbers of this form are Generalized Unique primes (see Links section).

a(16)=96873 corresponds to a prime with 653552 decimal digits.

The search for a(17) which corresponds to a 1385044-decimal digit prime was performed on a small Amazon EC2 cloud farm (40 GRID K520 GPUs), at a cost of approximately $1000 over three weeks.

a(18)<=712012 corresponds to a prime with 3068389 decimal digits (not all lower candidates have been checked). - Serge Batalov, Jan 15 2018

a(19)<=123447 corresponds to a prime with 5338805 decimal digits (not all lower candidates have been checked). - Serge Batalov, Jan 15 2018

LINKS

Table of n, a(n) for n=0..17.

C. Caldwell, Generalized unique primes

MATHEMATICA

Table[SelectFirst[Range@ 200, PrimeQ[#^(2^n) (#^(2^n) - 1) + 1] &], {n, 0, 9}] (* Michael De Vlieger, Jan 15 2018 *)

PROG

(PARI)

a(n)=k=1; while(!ispseudoprime(k^(2^n)*(k^(2^n)-1)+1), k++); k

n=0; while(n<100, print1(a(n), ", "); n++) \\ Derek Orr, Aug 14 2014

CROSSREFS

Cf. A205506, A246120, A246121, A153438, A101406, A153436, A056993, A298206.

Sequence in context: A174577 A194684 A076737 * A210562 A208512 A208908

Adjacent sequences:  A246116 A246117 A246118 * A246120 A246121 A246122

KEYWORD

nonn,more,hard

AUTHOR

Serge Batalov, Aug 14 2014

EXTENSIONS

a(16) from Serge Batalov, Dec 30 2014

a(17) from Serge Batalov, Feb 10 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 21:53 EDT 2021. Contains 348180 sequences. (Running on oeis4.)