login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246074 Paradigm Shift Sequence for a (-4,5) production scheme with replacement. 18
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44, 48, 56, 64, 72, 80, 88, 96, 112, 128, 144, 160, 176, 192, 224, 256, 288, 320, 352, 384, 448, 512, 576, 640, 704, 768, 896, 1024, 1152, 1280, 1408, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3584, 4096, 4608, 5120, 5632, 6144, 7168, 8192, 9216 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=-4 steps), or implement the current bundled action (which requires q=5 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output followinging a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 2.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.
5. The paradigm shift sequence for the R(-4,5) scheme is also the solution to the R(-2,4) scheme.
LINKS
FORMULA
a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
a(n) = 2*a(n-6) for all n >= 12.
G.f.: x*(1+x)^2 * (1-x+x^2)^2 * (1+x+x^2)^2 / (1-2*x^6). - Colin Barker, Nov 18 2016
MATHEMATICA
Join[{1, 2, 3, 4, 5}, LinearRecurrence[{0, 0, 0, 0, 0, 2}, {6, 7, 8, 9, 10, 11}, 64]] (* Jean-François Alcover, Sep 25 2017 *)
PROG
(PARI) Vec(x*(1+x)^2 * (1-x+x^2)^2 * (1+x+x^2)^2 / (1-2*x^6) + O(x^100)) \\ Colin Barker, Nov 18 2016
CROSSREFS
Paradigm shift sequences with implementation step q=5: A103969, A246074, A246075, A246076, A246079, A246083, A246087, A246091, A246095, A246099, A246103.
Paradigm shift sequences with negative bundling steps: A103969, A246074, A246075, A246076, A246079, A029750, A246078, A029747, A246077, A029744, A029747, A131577.
Sequence in context: A221912 A008730 A033064 * A130225 A096902 A246081
KEYWORD
nonn,easy
AUTHOR
Jonathan T. Rowell, Aug 13 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:17 EDT 2024. Contains 371964 sequences. (Running on oeis4.)