login
A246046
[Pi((n + Pi/2)/(Pi -1) - 1/2)]; complement of A062389.
8
2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96
OFFSET
1,1
COMMENTS
In general, the complement of a nonhomogenous Beatty sequence [n*r + h] is given by [n*s + h - h*s], where s = r/(r - 1).
A246046 also gives the nonnegative integers k such that tan(k) < tan(k + 1). The complementary sequence, A062389, gives the nonnegative integers k such that tan(k) > tan(k + 1).
MATHEMATICA
r = Pi; s = Pi/(Pi - 1); h = -Pi/2; z = 120;
u = Table[Floor[n*r + h], {n, 1, z}] (* A062389 *)
v = Table[Floor[n*s + h - h*s], {n, 1, z}] (* A246046 *)
CROSSREFS
Cf. A062389.
Sequence in context: A226721 A224996 A373112 * A026428 A030704 A305928
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 24 2014
STATUS
approved