login
A246044
Monoprimatic permutable primes: Decimal prime numbers whose digits cannot be rearranged to form another prime number. No leading zeros allowed.
4
2, 3, 5, 7, 11, 19, 23, 29, 41, 43, 47, 53, 59, 61, 67, 83, 89, 101, 103, 109, 151, 211, 223, 227, 229, 233, 257, 263, 269, 307, 353, 383, 401, 409, 431, 433, 443, 449, 487, 499, 503, 509, 523, 541, 557, 599, 601, 607, 661, 677, 773, 809, 827, 829, 853, 859, 881, 883, 887, 929, 997, 1447, 1451, 1481, 2003, 2017, 2029, 2087
OFFSET
1,1
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..760 (terms < 10^13, terms 1..406 from Andreas Boe, terms 407..538 from Chai Wah Wu)
EXAMPLE
859 -> 589 (composite), 598 (even), 859 (prime), 895 (composite), 958 (even), 985 (composite) -> conclusion: one prime number.
MATHEMATICA
mppQ[n_]:=Total[Boole[PrimeQ[Select[FromDigits/@Permutations[IntegerDigits[n]], IntegerLength[ #] == IntegerLength[ n]&]]]] ==1; Select[Prime[Range[500]], mppQ] (* Harvey P. Dale, Dec 06 2021 *)
PROG
(Python)
from itertools import permutations
from sympy import prime, isprime
A246044 = []
for n in range(1, 10**6):
p = prime(n)
for x in permutations(str(p)):
if x[0] != '0':
p2 = int(''.join(x))
if p2 != p and isprime(p2):
break
else:
A246044.append(p) # Chai Wah Wu, Aug 27 2014
CROSSREFS
Cf. A245808 (monoprimatic permutable numbers)
Cf. A246043 (biprimatic permutable numbers, A246045 (biprimatic permutable primes).
Sequence in context: A322471 A262837 A143260 * A039986 A278694 A214837
KEYWORD
nonn,base
AUTHOR
Andreas Boe, Aug 23 2014
STATUS
approved