The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245911 Number of pairs of endofunctions f, g on [n] satisfying f(g^n(i)) = f(i) for all i in [n]. 3
 1, 1, 12, 207, 9184, 173225, 46097856, 729481375, 454190410752, 30607186160529, 12762075858688000, 1036636706945881151, 3080713389889966460928, 145084860487902521548921, 124325137916420574135066624, 56537825009822523196823829375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..100 MAPLE with(combinat): T:= proc(n, j) T(n, j):= binomial(n-1, j-1)*n^(n-j) end: b:= proc(n, i, k) option remember; `if`(n=0 or i=1, x^n,       expand(add((i-1)!^j*multinomial(n, n-i*j, i\$j)/j!*       x^(igcd(i, k)*j)*b(n-i*j, i-1, k), j=0..n/i)))     end: a:= n-> add((p-> add(n^i*T(n, j)* coeff(p, x, i),         i=0..degree(p)))(b(j\$2, n)), j=0..n): seq(a(n), n=0..20); MATHEMATICA multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = Function[{x}, If[n == 0 || i == 1, x^n, Expand[Sum[(i - 1)!^j*multinomial[n, Join[{n - i*j}, Array[i&, j]]]/j!* x^(GCD[i, k]*j)*b[n - i*j, i - 1, k][x], {j, 0, n/i}]]]]; a[n_] := If[n == 0, 1, Sum[Binomial[n - 1, j - 1]*n^(n - j)*b[j, j, n][n], {j, 0, n}]]; a /@ Range[0, 20] (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *) CROSSREFS Main diagonal of A245910. Cf. A245988. Sequence in context: A151590 A297311 A217703 * A127909 A307691 A129466 Adjacent sequences:  A245908 A245909 A245910 * A245912 A245913 A245914 KEYWORD nonn AUTHOR Alois P. Heinz, Aug 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 8 02:27 EDT 2020. Contains 333312 sequences. (Running on oeis4.)