login
A245885
Decimal expansion of Gamma(7/2), where Gamma is Euler's gamma function.
3
3, 3, 2, 3, 3, 5, 0, 9, 7, 0, 4, 4, 7, 8, 4, 2, 5, 5, 1, 1, 8, 4, 0, 6, 4, 0, 3, 1, 2, 6, 4, 6, 4, 7, 2, 1, 7, 7, 4, 5, 4, 0, 5, 2, 3, 0, 2, 2, 9, 4, 7, 5, 8, 6, 5, 4, 0, 0, 8, 8, 9, 6, 0, 5, 9, 7, 4, 2, 0, 8, 6, 5, 8, 6, 0, 8, 1, 8, 5, 3, 4, 0, 0, 7, 8, 0, 3, 2, 4, 8, 1, 3, 8, 4, 7, 7, 1, 2, 4, 7, 6, 5, 5, 4
OFFSET
1,1
LINKS
Eric Weisstein's MathWorld, Gamma Function
FORMULA
Gamma(7/2) = (15/8)*sqrt(Pi) = (5/2)*A245884.
Equals Integral_{x=0..oo} exp(-x^(2/5)) dx. - Ilya Gutkovskiy, Apr 10 2024
Equals 30*A019718. - Hugo Pfoertner, Apr 10 2024
EXAMPLE
3.3233509704478425511840640312646472177454052302294758654008896...
MATHEMATICA
RealDigits[Gamma[7/2], 10, 104] // First
PROG
(PARI) gammah(3) \\ Michel Marcus, Feb 11 2016
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved