This site is supported by donations to The OEIS Foundation.



Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245883 Number of distinct chromatic polynomials among all connected graphs on n nodes. 11


%S 1,1,2,5,14,50,231,1650,21121,584432

%N Number of distinct chromatic polynomials among all connected graphs on n nodes.

%C A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic polynomial is given by chi_G(x) = Sum_p (x)_k, where the sum is over all stable partitions of G, k is the length (number of blocks) of p, and (x)_k is the falling factorial x(x-1)(x-2)...(x-k+1). - _Gus Wiseman_, Nov 24 2018

%H Travis Hoppe and Anna Petrone, <a href="https://github.com/thoppe/Encyclopedia-of-Finite-Graphs">Encyclopedia of Finite Graphs</a>

%H T. Hoppe and A. Petrone, <a href="http://arxiv.org/abs/1408.3644">Integer sequence discovery from small graphs</a>, arXiv preprint arXiv:1408.3644 [math.CO], 2014.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a>

%e From _Gus Wiseman_, Nov 24 2018: (Start)

%e The a(4) = 5 chromatic polynomials:

%e -6x + 11x^2 - 6x^3 + x^4

%e -4x + 8x^2 - 5x^3 + x^4

%e -2x + 5x^2 - 4x^3 + x^4

%e -3x + 6x^2 - 4x^3 + x^4

%e -x + 3x^2 - 3x^3 + x^4

%e (End)

%t spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}];

%t falling[x_,k_]:=Product[(x-i),{i,0,k-1}];

%t chromPoly[g_]:=Expand[Sum[falling[x,Length[stn]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]];

%t simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];

%t csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];

%t Table[Length[Union[chromPoly/@Select[simpleSpans[n],Length[csm[#]]==1&]]],{n,5}] (* _Gus Wiseman_, Nov 24 2018 *)

%Y Cf. A229048 (simple graphs, including disconnected ones, with unique chromatic polynomials).

%Y Cf. A001187, A001349, A006125, A125702, A229048, A240936, A245883, A277203, A321911, A322011.

%K nonn,hard,more

%O 1,3

%A _Travis Hoppe_ and _Anna Petrone_, Aug 05 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 17:03 EST 2019. Contains 330000 sequences. (Running on oeis4.)