login
A245862
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 9.
2
1, 0, 0, 0, 0, 0, 0, 0, 0, 48620, 184756, 335920, 587860, 994840, 1634380, 2615008, 4085950, 6249100, 227882805150, 1914150638400, 10597377540750, 42894094729200, 150967391072550, 488846715676800, 1495608303532200, 4389524294884872, 12479799500904120
OFFSET
9,10
LINKS
FORMULA
E.g.f.: 1/(1-Sum_{j>=9} x^j/j!) - 1/(1-Sum_{j>=10} x^j/j!).
a(n) = A245794(n) - A245795(n) = A245732(n,9) - A245732(n,10).
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 9) -b(n, 10):
seq(a(n), n=9..40);
CROSSREFS
Column k=9 of A245733.
Sequence in context: A268852 A024753 A024761 * A177313 A140924 A351488
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 04 2014
STATUS
approved